Product data sheet

Specifications
(!) Discontinued - Service only

enclosed variable speed drive ATV71 Plus - 1500 kW - 690V IP54

ATV71EXA5M15Y
(!) Discontinued on: Dec 31, 2023
(!) To be end-of-service on: Dec 31, 2031

Main

Range Of Product	Altivar 71 Plus
Product Or Component Type	Variable speed drive
Device Short Name	ATV71 Plus
Product Destination	Asynchronous motors
Synchronous motors	
Product Specific Application	Complex, high-power machines
Assembly Style	With integrated cooling circuit In floor-standing enclosure with separate air flows
Product Composition	Integrated drive system ATV71EM15YE1
	A switch and fast-acting fuses
Terminals/bars for motor connection	
Control transformer for 230 V	
An IP65 remote mounting kit for graphic display terminal	
A wired ready-assembled Sarel Spacial 6000 enclosure	
Emc Filter	Integrated
Network Number Of Phases	3 phases
Rated Supply Voltage	$690 \mathrm{~V} \mathrm{+/-10} \mathrm{\%}$
Supply Voltage Limits	$621 \ldots 759 \mathrm{~V}$
Supply Frequency	$50 \ldots 60 \mathrm{~Hz}+/-5 \%$
Network Frequency	$47.5 \ldots 63 \mathrm{~Hz}$
Motor Power Kw	$1500 \mathrm{~kW}, 3$ phases at 690 V
Line Current	1514 A for $690 \mathrm{~V} / 1500 \mathrm{~kW}$

Complementary

Apparent Power	1809 kVA for $690 \mathrm{~V} / 1500 \mathrm{~kW}$
Prospective Line Isc	100 kA with external fuses
Continuous Output Current	1580 A at $2.5 \mathrm{kHz}, 690 \mathrm{~V} / 1500 \mathrm{~kW}$
Maximum Transient Current	2370 A for $60 \mathrm{~s} / 1500 \mathrm{~kW}$
Speed Drive Output Frequency	$0.1 \ldots 500 \mathrm{~Hz}$
Nominal Switching Frequency	2.5 kHz
Switching Frequency	$2 . . .4 .9 \mathrm{kHz}$ adjustable
	$2.5 \ldots 4.9 \mathrm{kHz}$ with derating factor

Speed Range	1... 100 for asynchronous motor in open-loop mode, without speed feedback 1... 50 for synchronous motor in open-loop mode, without speed feedback 1... 1000 for asynchronous motor in closed-loop mode with encoder feedback
Speed Accuracy	$+/-0.01 \%$ of nominal speed in closed-loop mode with encoder feedback 0.2 Tn to Tn +/- 10% of nominal slip without speed feedback 0.2 Tn to Tn
Torque Accuracy	+/- 5% in closed-loop mode with encoder feedback + +- 15% in open-loop mode, without speed feedback
Transient Overtorque	170% of nominal motor torque for 60 s 220% of nominal motor torque for 2 s
Braking Torque	30 \% without braking resistor <= 150% with braking or hoist resistor
Asynchronous Motor Control Profile	Flux vector control without sensor, standard Flux vector control without sensor, ENA (energy Adaptation) system Voltage/frequency ratio, 2 points Voltage/frequency ratio, 5 points Voltage/frequency ratio - Energy Saving, quadratic U/f Flux vector control without sensor, 2 points Flux vector control with sensor, standard
Synchronous Motor Control Profile	Vector control with sensor, standard Vector control without sensor, standard
Regulation Loop	Adjustable PI regulator
Motor Slip Compensation	Suppressable Adjustable Automatic whatever the load Not available in voltage/frequency ratio (2 or 5 points)
Overvoltage Category	Class 3 conforming to EN 50178
Local Signalling	LCD display unit for operation function, status and configuration - mounted in the front door
Output Voltage	<= supply voltage
Isolation	Electrical between power and control
Type Of Cable For External Connection	IEC cable at $40^{\circ} \mathrm{C}$, copper $70^{\circ} \mathrm{C} / \mathrm{PVC}$ UL 508 cable at $40^{\circ} \mathrm{C}$, copper $75^{\circ} \mathrm{C} / \mathrm{PVC}$
Electrical Connection	Terminal - $2.5 \mathrm{~mm}^{2}$ / AWG 14 (R1A, R1B, R1C, R2A, R2B) bottom entry Screw clamp terminals - $1.5 \mathrm{~mm}^{2}$ (Al1-/AI1+, Al2, AO1, LI1...LI6, PWR) bottom entry Bar M12-16 $\times 240 \mathrm{~mm}^{2}$ (L1/R, L2/S, L3/T) bottom entry at 6 -pulse operation Bar M12-8 $\times 240 \mathrm{~mm}^{2}$ (L1/R, L2/S, L3/T) bottom entry at 12-pulse operation Bar M12-24 x $240 \mathrm{~mm}^{2}$ (U/T1, V/T2, W/T3) bottom entry
Motor Recommanded Cable Cross Section	$\begin{aligned} & 6(3 \times 240) \mathrm{mm}^{2} \\ & 7(3 \times 185) \mathrm{mm}^{2} \end{aligned}$
Short-Circuit Protection	2500 A fuse protection type gl - power supply upstream - at 6-pulse operation 1250 A fuse protection type gl - power supply upstream - at 12-pulse operation
Supply	External supply: 24 V DC ($19 \ldots . .30 \mathrm{~V}$), $<1 \mathrm{~A}$ Internal supply for reference potentiometer: 10 V DC ($10 \ldots 11 \mathrm{~V}$), < 10 mA Internal supply: 24 V DC ($21 \ldots 27 \mathrm{~V}$), $<100 \mathrm{~mA}$
Analogue Input Number	2
Analogue Input Type	Al2 software-configurable voltage: $0 . .10 \mathrm{~V}$ DC, 24 V max, impedance: 30000 Ohm, sampling time: $1.5 \ldots 2.5 \mathrm{~ms}$, resolution: 11 bits Al1-/Al1+ bipolar differential voltage: +/- 10 V DC, 24 V max, sampling time: $1.5 \ldots . .2 .5$ ms , resolution: 11 bits + sign Al2 software-configurable current: $0 \ldots 20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$, impedance: 250 Ohm, sampling time: $1.5 \ldots 2.5 \mathrm{~ms}$, resolution: 11 bits
Analogue Output Number	1
Analogue Output Type	Software-configurable voltage: (AO1) $0 . . .10 \mathrm{~V}$ DC - 470 Ohm - sampling time: $1.5 \ldots$ 2.5 ms - resolution: 10 bits Software-configurable current: (AO1) $0 . . .20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$ - 500 Ohm - sampling time: 1.5 ... 2.5 ms - resolution: 10 bits
Discrete Output Number	2

Discrete Output Type	Configurable relay logic: (R1A, R1B, R1C)NO/NC - $6.5 \ldots 7.5 \mathrm{~ms}$ - 100000 cycles Configurable relay logic: (R2A, R2B)NO - 6.5... $7.5 \mathrm{~ms}-100000$ cycles
Minimum Switching Current	3 mA at 24 V DC (configurable relay logic)
Maximum Switching Current	5 A at 250 V AC on resistive load $-\cos$ phi $=1(\mathrm{R} 1, \mathrm{R} 2)$ 5 A at 30 V DC on resistive load $-\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$ (R1, R2) 2 A at 250 V AC on inductive load $-\cos$ phi $=0.4$ (R1, R2) 2 A at 30 V DC on inductive load $-\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$
Discrete Input Number	7
Discrete Input Type	Programmable (LI1...LI5) at 24 V DC <= 30 V level 1 PLC 3.5 kOhm (duration=1.5... 2.5 ms) Switch-configurable (LI6) at 24 V DC $<=30 \mathrm{~V}$ level 1 PLC 1.5 kOhm (duration=1.5... 2.5 ms) Safety input (PWR) at 24 V DC <= 30 V 1.5 kOhm
Discrete Input Logic	Positive logic (source) (LI1...LI5), $0 \ldots 5 \mathrm{~V}$ (state 0), $11 \ldots 30 \mathrm{~V}$ (state 1) Negative logic (sink) (LI1...LI5), 16... 30 V (state 0), $0 . . .10 \mathrm{~V}$ (state 1) Positive logic (source) (PWR), $0 . .2 \mathrm{~V}$ (state 0), 17... 30 V (state 1)
Acceleration And Deceleration Ramps	S, U or customized Linear adjustable separately from 0.01 to 9000 s
Braking To Standstill	By DC injection
Protection Type	Overheating protection: drive Thermal protection: drive Short-circuit between motor phases: drive Input phase breaks: drive Overcurrent between output phases and earth: drive Overvoltages on the DC bus: drive Break on the control circuit: drive Against exceeding limit speed: drive Line supply undervoltage: drive Line supply overvoltage: drive Against input phase loss: drive Thermal protection: motor Motor phase break: motor Power removal: motor
Dielectric Strength	3535 V DC between earth and power terminals 5092 V DC between control and power terminals
Insulation Resistance	> 1 mOhm 500 V DC for 1 minute to earth
Frequency Resolution	Display unit: 0.1 Hz Analog input: $0.024 / 50 \mathrm{~Hz}$
Communication Port Protocol	CANopen Modbus
Connector Type	1 RJ45 (on front face) for Modbus 1 RJ45 (on terminal) for Modbus Male SUB-D 9 on RJ45 for CANopen
Physical Interface	2-wire RS 485 for Modbus
Transmission Frame	RTU for Modbus
Transmission Rate	9600 bps, 19200 bps for Modbus on front face $4800 \mathrm{bps}, 9600 \mathrm{bps}, 19200 \mathrm{bps}, 38.4 \mathrm{Kbps}$ for Modbus on terminal $20 \mathrm{kbps}, 50 \mathrm{kbps}, 125 \mathrm{kbps}, 250 \mathrm{kbps}, 500 \mathrm{kbps}, 1 \mathrm{Mbps}$ for CANopen
Data Format	8 bits, 1 stop, even parity for Modbus on front face 8 bits, odd even or no configurable parity for Modbus on terminal
Type Of Polarization	No impedance for Modbus
Number Of Addresses	1... 247 for Modbus 1... 127 for CANopen
Method Of Access	Slave CANopen

Option Card	Communication card for Modbus TCP/IP Communication card for Fipio Communication card for Modbus/Uni-Telway Communication card for Modbus Plus Communication card for EtherNet/IP Communication card for DeviceNet Communication card for Profibus DP Communication card for Profibus DP V1 Communication card for Interbus-S Communication card for CC-Link Basic I/O extension card Extended I/O extension card Controller inside programmable card Encoder interface cards
Options For Enclosure Configuration	Safe standstill for power circuit PTC relay for power circuit Pt100 relay for power circuit Insulation monitoring for power circuit Design for IT networks for power circuit External 230 V supply terminals for power circuit Buffer voltage 24 V DC power supply for power circuit External 24 V DC supply terminals for power circuit Enclosure lighting for power circuit Key switch (local/remote) for power circuit Motor heating for power circuit External motor fan for power circuit Voltmeter for power circuit Door handle for main switch for power circuit Circuit breaker for power circuit Line contactor for power circuit 12-pulse supply for power circuit Line reactor for power circuit Ammeter for power circuit Enclosure heating for power circuit Motor choke for power circuit Cable entry via the top for power circuit Enclosure plinth for power circuit Door handle for circuit breaker for power circuit Control terminals for control circuit Adaptor for 115 V logic inputs for control circuit Relay output C/O for control circuit Isolated amplifier for control circuit
Operating Position	Vertical +/-10 degree
Colour Of Enclosure	Light grey (RAL 7035)
Colour Of Base Of Enclosure	Dark grey (RAL 7022)
Height	2009 mm
Width	3400 mm
Depth	642 mm
Net Weight	1925 kg
Environment	
Electromagnetic Compatibility	Electrostatic discharge immunity test level 3 conforming to IEC 61000-4-2 Radiated radio-frequency electromagnetic field immunity test level 3 conforming to IEC 61000-4-3 Electrical fast transient/burst immunity test level 4 conforming to IEC 61000-4-4 $1.2 / 50 \mu \mathrm{~s}-8 / 20 \mu \mathrm{~s}$ surge immunity test level 3 conforming to IEC 61000-4-5 Conducted radio-frequency immunity test level 3 conforming to IEC 61000-4-6 Voltage dips and interruptions immunity test conforming to IEC 61000-4-11
Pollution Degree	3 conforming to EN/IEC 61800-5-1
Ip Degree Of Protection	IP54
Vibration Resistance	1.5 mm peak to peak (f=3...10 Hz) conforming to EN/IEC 60068-2-6 0.6 gn ($\mathrm{f}=10 \ldots 200 \mathrm{~Hz}$) conforming to EN/IEC 60068-2-6 3M3 conforming to EN/IEC 60721-3-3
Shock Resistance	4 gn for 11 ms conforming to EN/IEC 60068-2-27 3M2 conforming to EN/IEC 60721-3-3

Noise Level	79 dB conforming to 86/188/EEC
Environmental Characteristic	Without condensation: 3C2 conforming to IEC 60721-3-3 Without condensation: 3 S2 conforming to IEC 60721-3-3 Without condensation: 3K3 conforming to IEC 60721-3-3
Relative Humidity	0... 95%
Ambient Air Temperature For Operation	$0 \ldots 40^{\circ} \mathrm{C}$ (without derating) $40 \ldots 50^{\circ} \mathrm{C}$ (with current derating of 1.2% per ${ }^{\circ} \mathrm{C}$)
Ambient Air Temperature For Storage	$-25 \ldots 70^{\circ} \mathrm{C}$
Volume Of Cooling Air	$11000 \mathrm{~m} 3 / \mathrm{h}$
Operating Altitude	<= 1000 m without derating $1000 \ldots 3000 \mathrm{~m}$ with current derating 1% per 100 m
Standards	EN 61800-3 environments 2 category C3 EN 55011 class A group 2 EN/IEC 61800-3 EN 61800-3 environments 1 category C3 EN/IEC 61800-5-1
Product Certifications	$\begin{aligned} & \text { ATEX } \\ & \text { GOST } \end{aligned}$
Marking	CE

Packing Units

Unit Type Of Package 1	PCE
Number Of Units In Package 1	1
Package 1 Height	200.0 cm
Package 1 Width	66.0 cm
Package 1 Length	344.0 cm
Package 1 Weight	1920.0 kg

Contractual warranty

Warranty 18 months

Dimensions Drawings

IP 23 Floor-Standing Enclosure with Separate Air Flows

Dimensions

NOTE: For each floor-standing enclosure added, allow a $4 \mathrm{~mm} / 0.15 \mathrm{in}$. space for the seal.

Connections and Schema

Floor-Standing Enclosure with Separate Air Flows

Standard 6-pulse Design

A1 Drive
A2 Enclosure
F1 Fuses
IL1 Optional line choke
KM1 Optional line contactor

M Motor
Q1 Switch
(1) Filter
(2) Control
(3) Relay control
(4) Reference potentiometer
(5) PLC
(6) Optional motor choke

Optional 12-pulse Design

A1 Drive
A2 Enclosure
F1 Fuses
IL1 Optional line choke
KM1 Optional line contactor
M Motor
Q1 Switch
(1) Filter
(2) Control
(3) Relay control
(4) Reference potentiometer
(5) PLC
(6) Optional motor choke

Performance Curves

IP 23 Floor-Standing Enclosure with Separate Air Flows

Derating Curves

The derating curves for the drive nominal current (In) are dependent on the temperature and switching frequency. For intermediate temperatures, interpolate between 2 curves.

NOTE: The drive will reduce the switching frequency automatically in the event of excessive temperature rise.

X Switching frequency (kHz)

NOTE: The temperatures shown correspond to the temperature of the air entering the enclosure.

